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� Scalability is a central issue for large-scale parallel computing
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� Scalability is a central issue for large-scale parallel computing

� Multigrid uses coarse grids to efficiently damp out error components
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� Variable-coefficient Poisson

−∇ · σ∇u = f in Ω , u = 0 on ∂Ω .
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� Variable-coefficient Poisson

−∇ · σ∇u = f in Ω , u = 0 on ∂Ω .

� Weak scaling (15K/cpu) up to 128K processors (total size 2B)

� Performance remains scalable on unstructured grids

26B unknowns on 98K processors took 210s (16 iterations)
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� Second order definite Maxwell

∇× µ−1∇× e + σ e = f
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� Second order definite Maxwell

∇× µ−1∇× e + σ e = f

� Weak scaling (70K/cpu) up to 1K processors (total size 83M)

� Performance remains scalable on unstructured grids

1.2B unknowns on 1.9K processors took 355s (23 iterations)
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■ Parallel smoothers in AMG

� critical component of AMG, not easy to parallelize

� polynomial smoothers

� hybrid Gauss-Seidel

● convergence properties degrade, but AMG smoothing properties
remain independent of number of processors (for large enough
size per processor)

� smoothing analysis based on the two-level AMG convergence
theory of Falgout and Vassilevski (SINUM 2004)

■ Adaptive AMG

� black box (discovers the local nature of smoothness)

� applicable to a wide range of problems (QCD)

� theory for interpolation based on local least-squares fit of
global spectrum (related to Brandt’s Bootstrap AMG)

■ AMG for linear systems obtained by local elimination
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■ Original problem
Ax = b

� A - FEM for scalar/electromagnetic diffusion
� want to solve it with Algebraic Multigrid (AMG)
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■ Original problem
Ax = b

� A - FEM for scalar/electromagnetic diffusion
� want to solve it with Algebraic Multigrid (AMG)

■ Eliminate “interior” degrees of freedom

A =

(

Aii Air

Ari Arr

)

� local elimination→ Aii is block-diagonal
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■ Original problem
Ax = b

� A - FEM for scalar/electromagnetic diffusion
� want to solve it with Algebraic Multigrid (AMG)

■ Eliminate “interior” degrees of freedom

A =

(

Aii Air

Ari Arr

)

� local elimination→ Aii is block-diagonal

■ Reduced problem
Sxr = br

� the Schur complement S = Arr −AriA
−1

ii Air is sparse
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■ Original problem
Ax = b

� A - FEM for scalar/electromagnetic diffusion
� want to solve it with Algebraic Multigrid (AMG)

■ Eliminate “interior” degrees of freedom

A =

(

Aii Air

Ari Arr

)

� local elimination→ Aii is block-diagonal

■ Reduced problem
Sxr = br

� the Schur complement S = Arr −AriA
−1

ii Air is sparse

■ Is this a good idea? – S has a smaller size, but does it require
less memory?
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■ Original problem
Ax = b

� A - FEM for scalar/electromagnetic diffusion
� want to solve it with Algebraic Multigrid (AMG)

■ Eliminate “interior” degrees of freedom

A =

(

Aii Air

Ari Arr

)

� local elimination→ Aii is block-diagonal

■ Reduced problem
Sxr = br

� the Schur complement S = Arr −AriA
−1

ii Air is sparse

■ Is this a good idea? – if AMG works for A, will it also work for S?
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■ Original problem
Ax = b

� A - FEM for scalar/electromagnetic diffusion
� want to solve it with Algebraic Multigrid (AMG)

■ Eliminate “interior” degrees of freedom

A =

(

Aii Air

Ari Arr

)

� local elimination→ Aii is block-diagonal

■ Reduced problem
Sxr = br

� the Schur complement S = Arr −AriA
−1

ii Air is sparse

■ Is this a good idea? – can we solve larger problems faster?
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■ Large-scale parallel multi-physics
simulation code

� Electromagnetic diffusion model

� Second order definite Maxwell

∇×
∆t

µ
∇× e + σ e = f

� Lowest order edge elements

� Large jumps in σ

� Support for pure void zones
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■ Large-scale parallel multi-physics
simulation code

� Electromagnetic diffusion model

� Second order definite Maxwell

∇×
∆t

µ
∇× e + σ e = f

� Lowest order edge elements

� Large jumps in σ

� Support for pure void zones

■ Sub-zonal discretization:

� Initial quad/hex mesh split into
4/24 tri/tet elements

� XY , RZ and 3D models lead to

● 2D Poisson

● 2D Maxwell

● 3D Maxwell
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■ Static condensation

� introduced by E. Wilson in 1974 to

“eliminate the internal degrees of freedom in a quadrilateral
finite element constructed from four triangles”

� frequently used to eliminate the interior degrees of freedom in
high-order FEM

� sparsity of Arr is not increased!
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1. Choose the set of reduced elements

2. Determine the interior dofs

3. Connect reduced unknowns
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■ Reduced FEM discretization

� Reduced elements
� Reduced degrees of freedom
� Reduced element matrices (local Schur complements)
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■ The XY case (2D nodal FEM)

� Asymptotically nrows(A)/nrows(S) ∼ 2, nnz(A)/nnz(S) ∼ 1.6

■ The RZ case (2D edge FEM)
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� Asymptotically nrows(A)/nrows(S) ∼ 3, nnz(A)/nnz(S) ∼ 2.1

■ In both cases we recover the associated quad mesh, but not the
quad-based discretization!



Element reduction in 3D

Algebraic Multigrid

Local elimination

Memory considerations

❖ Static condensation

❖ Element reduction

❖ 2D case

❖ 3D case

Will AMG work?

Numerical results

Conclusions

ASCR PI Meeting – Berkeley, 2010 11 / 31

■ The full 3D case (3D edge FEM)

� SH : hexahedral reduced elements, nnz(A)/nnz(S) ∼ 0.4

� SO : octahedral reduced elements, nnz(A)/nnz(S) ∼ 1.4

■ Octahedral reduction is the best in terms of memory usage!
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■ The Schur complement inherits a lot of solver-friendly properties
from the original matrix

� S can be assembled locally

� If A is an M-matrix, so is S

� κ(S) ≤ κ(A)

■ S can be seen as a coarse-grid matrix corresponding to
interpolation by a harmonic extension

S = PtAP , where P =

(

−A−1

ii Air

I

)

.

■ Energy minimization property

(Sxr, xr) = inf
x|r=xr

(Ax, x)

■ In particular, DS ≤ DA, where DM := diag(M).
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■ Require knowledge of near nullspace: Ae ≈ 0

■ Classical AMG for Poisson problems

� near nullspace is locally constant

� coarsening and interpolation based on strength of connection:
ei strongly depends on ej if

−Aij ≥ θ max
k 6=i
{−Aik}

� 0 < θ ≤ 1 is the strength threshold parameter.

■ Auxiliary-space Maxwell Solver (AMS) for definite Maxwell

� near nullspace is large, includes local gradients

� based on the finite element HX decomposition by Hiptmair
and Xu

� two (auxiliary space) V-cycles requiring discrete gradient and
Nedelec interpolation matrices
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G
−→

Π
←−

■ Discrete gradient matrix G corresponds to the mapping

ϕ ∈ Sh 7→ ∇ϕ ∈ Vh ,

G describes the edges of the mesh in terms of its vertices.

■ The Nedelec interpolation operator Πh transfers linear vector
fields ϕ ∈ Sh ≡ S3

h into Vh:

Πhϕ =
∑

e

(
∫

e

ϕ · te ds

)

Φe .

Π = [Πx Πy Πz] – the matrix representation of Πh can be
computed based on G and the coordinates of the vertices.
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■ Hiptmair-Xu decomposition: any uh ∈ Vh can be split into

uh = vh +∇ph + Πhzh

where vh ∈ Vh, ph ∈ Sh and zh ∈ Sh satisfy

h−1‖vh‖0 + ‖zh‖1 ≤ C ‖∇ × uh‖0 , ‖∇ph‖0 ≤ C ‖uh‖0 .

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl)
and H(div) spaces, SINUM, 2007.

http://dx.doi.org/10.1137/060660588
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■ Hiptmair-Xu decomposition: any uh ∈ Vh can be split into

uh = vh +∇ph + Πhzh

where vh ∈ Vh, ph ∈ Sh and zh ∈ Sh satisfy

h−1‖vh‖0 + ‖zh‖1 ≤ C ‖∇ × uh‖0 , ‖∇ph‖0 ≤ C ‖uh‖0 .

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl)
and H(div) spaces, SINUM, 2007.

■ AMS implementation

B = R + GBGT + Π Bv ΠT

where

� R is a point smoother for A.

� B is an AMG V-cycle for GTAG.

� Bv is an AMG V-cycle for ΠTAΠ (‖Πhzh‖H (curl) . ‖zh‖1).

http://dx.doi.org/10.1137/060660588


Near-nullspace reduction

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

❖ Schur complement

❖ AMG solvers

❖ Interpolation operators

❖ HX decomposition

❖ Near-nullspace

❖ HX-r decomposition

❖ Subspace problems

❖ Bad aspect ratios

Numerical results

Conclusions

ASCR PI Meeting – Berkeley, 2010 17 / 31

■ The near nullspace of S is the restriction of the near-nullspace of
A to the reduced degrees of freedom:

� Suppose Ae ≈ 0, then Aiiei + Airer ≈ 0 implies e ≈ Per, so

Ser = PtAPer ≈ PtAe ≈ 0 .

� On the other hand, (Ser, er) ≈ 0 implies Ae ≈ 0 for e = Per.

� for XY we can apply AMG directly to S
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■ The near nullspace of S is the restriction of the near-nullspace of
A to the reduced degrees of freedom:

� Suppose Ae ≈ 0, then Aiiei + Airer ≈ 0 implies e ≈ Per, so

Ser = PtAPer ≈ PtAe ≈ 0 .

� On the other hand, (Ser, er) ≈ 0 implies Ae ≈ 0 for e = Per.

� for XY we can apply AMG directly to S

■ Reduced discrete gradient and nodal interpolation matrices.

� Edge reduction implies node reduction

� Note that the discrete gradient matrix can be partitioned as

G =

(

Gii Gir

0 Grr

)

� The restriction of Ran(G) to reduced unknowns is Ran(Grr) –
the discrete gradient defined on the reduced mesh.

� Same holds for Π, so we can apply AMS directly to S
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In matrix terms, the HX decomposition states that

u = v + Gp + Πz

such that

(Au, u) & (AGp, Gp) + (AΠz, Πz) + (DAv, v)
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In matrix terms, the HX decomposition states that

u = v + Gp + Πz

such that

(Au, u) & (AGp, Gp) + (AΠz, Πz) + (DAv, v)

Fix ur and consider u = Pur above. Then

ur = vr + Grrpr + Πrrzr
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In matrix terms, the HX decomposition states that

u = v + Gp + Πz

such that

(Au, u) & (AGp, Gp) + (AΠz, Πz) + (DAv, v)

Fix ur and consider u = Pur above. Then

ur = vr + Grrpr + Πrrzr

Therefore,

(Sur, ur) = (Au, u) & (AGp, Gp) ≥ (SGrrpr, Grrpr)
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In matrix terms, the HX decomposition states that

u = v + Gp + Πz

such that

(Au, u) & (AGp, Gp) + (AΠz, Πz) + (DAv, v)

Fix ur and consider u = Pur above. Then

ur = vr + Grrpr + Πrrzr

Therefore,

(Sur, ur) = (Au, u) & (AGp, Gp) ≥ (SGrrpr, Grrpr)

Similarly (Sur, ur) & (SΠrrpr, Πrrpr). Note that Πrr can still be
computed from Grr and the coordinates of the reduced vertices.
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In matrix terms, the HX decomposition states that

u = v + Gp + Πz

such that

(Au, u) & (AGp, Gp) + (AΠz, Πz) + (DAv, v)

Fix ur and consider u = Pur above. Then

ur = vr + Grrpr + Πrrzr

Therefore,

(Sur, ur) = (Au, u) & (AGp, Gp) ≥ (SGrrpr, Grrpr)

Similarly (Sur, ur) & (SΠrrpr, Πrrpr). Note that Πrr can still be
computed from Grr and the coordinates of the reduced vertices.

Finally,
(Sur, ur) = (Au, u) & (DAv, v) ≥ (DSvr, vr)
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■ GT
rrSGrr is the Schur complement of GT AG

� classical AMG works for the reduced subspace problems

■ Commuting diagram
PGrr = GPn

where Pn – nodal GT AG-harmonic extension:

Pn =

(

−(GT AG)−1

ii (GT AG)ir

I

)

■ Proof

lhsi = −A−1

ii AirGrr , rhsi = −Gii(G
T AG)−1

ii (GT AG)ir + Gir

Note that

(GT AG)ii = GT
iiAiiGii , (GT AG)ir = GT

iiAiiGir + GT
iiAirGrr

Thus

(GT AG)iiG
−1

ii rhsi = GT
iiAiirhsi = −GT

iiAirGrr = GT
iiAiilhsi

■ Now
PT

nGT AGPn = GT
rrP

T APGrr = GT
rrSGrr
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■ A common occurrence in the motivating applications

■ In 2D the reduction process will eliminate badly shaped
triangles. In 3D the improvement is only marginal.

■ Compare reduced stencil with the standard Q1 FEM stencil
(where AMG does not work with θ = 0.25).

−1 −6 −1

2 12 2

−1 −6 −1

−1 −4 −1

2 8 2

−1 −4 −1

� Introducing and then eliminating the (artificial) interior
unknowns leads to a better discretization for Multigrid!

■ We expect improved performance on stretched grids in 2D.
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■ Tests with BoomerAMG and AMS from

HYPRE_Solver solver;
HYPRE_AMSCreate(&solver);

/* Set discrete gradient matrix */
HYPRE_AMSSetDiscreteGradient(solver, G);
/* Set vertex coordinates */
HYPRE_AMSSetCoordinateVectors(solver, X, Y, Z);

HYPRE_AMSSetup(solver, A, b, x);
HYPRE_AMSSolve(solver, A, b, x);

■ Both applied as preconditioners in CG for the reduced problem.

■ Using BoomerAMG’s low-complexity coarsening and long-range
interpolation options.

■ Using the zero-conductivity version of AMS for problems with
pure void.

■ Notation: θ, σnc/σc, ε, nit, tsetup, tsolve, t.
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■ Magnetic field diffuses through void and into material.

■ Simplified serial test to vary conductivity ratio, aspect ratio and
solver parameters.

problem N nnz

XY 33,025 / 16,641 230,145 / 148,225 (×1.6)
RZ 98,560 / 33,024 491,776 / 229,632 (×2.1)
3D 239,260 / 90,460 3,724,060 / 2,658,460 (×1.4)

■ ∆t/µ ∼ 10−3

■ AMS-CG convergence tolerance 10−10.
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■ Comparison of overall solution times

■ θ = 0.34, σnc/σc = 0

1/ε nit tassemble tsolver t

1 7/ 7 0.33/0.24 0.34/0.13 ×1.8
2 13/ 8 0.30/0.21 0.43/0.13 ×2.2
4 12/ 8 0.28/0.21 0.38/0.13 ×2.0
8 12/12 0.28/0.21 0.37/0.17 ×1.7

16 16/12 0.28/0.22 0.45/0.19 ×1.7
32 24/11 0.28/0.21 0.62/0.17 ×2.4
64 35/ 9 0.29/0.21 0.90/0.15 ×3.2

128 40/ 7 0.32/0.22 1.10/0.14 ×4.0
256 45/ 7 0.30/0.24 1.24/0.16 ×3.8
512 45/ 7 0.28/0.23 1.12/0.13 ×3.9

1024 46/ 7 0.32/0.24 1.32/0.16 ×4.0
2048 46/ 7 0.29/0.24 1.29/0.16 ×3.9
4096 46/ 7 0.30/0.25 1.37/0.15 ×4.2

■ Note the reduced setup time and that when we have the same
number of iterations (ε = 1) there is still a factor of 1.8 speedup.
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■ Reduced problem – dependence on σ

■ θ = 0.4

σnc/σc

1/ε 1 10−2 10−4 10−6 10−8 0
1 7 7 7 7 7 7
2 7 8 7 7 7 7
4 7 8 8 8 8 8
8 7 8 8 8 8 8

16 7 8 8 8 8 8
32 7 8 8 8 8 8
64 6 7 7 7 7 7

128 6 6 6 6 6 6
256 7 6 6 6 6 6
512 8 7 7 7 7 7

1024 8 7 7 7 7 7
2048 8 7 7 7 7 7
4096 8 7 7 7 7 7

■ Number of iterations independent σnc/σc and ε!
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■ Comparison of overall solution times – pure void

■ θ = 0.17, σnc/σc = 0

1/ε nit tassemble tsolver t

1 8/ 8 1.74/0.75 11.9/3.96 ×2.9
2 8/ 8 1.66/0.71 12.2/4.08 ×2.9
4 10/ 8 1.76/0.72 14.2/4.09 ×3.3
8 16/ 8 1.73/0.69 20.1/3.84 ×4.8

16 28/ 9 1.65/0.71 26.7/4.01 ×6.0
32 45/11 1.35/0.71 34.6/4.69 ×6.7
64 74/14 1.23/0.71 50.1/5.05 ×8.9

128 125/18 1.27/0.71 80.9/6.53 ×11.
256 211/24 1.26/0.71 138./8.31 ×15.
512 362/28 1.49/0.69 236./9.47 ×23.

1024 500/30 1.25/0.71 315./9.70 ×30.
2048 707/31 1.26/0.71 352./10.4 ×32.
4096 828/33 1.04/0.68 407./11.0 ×35.

■ This is AMG for the Schur complement of a singular matrix!

■ Iteration times increase, but we need less of them for small ε.
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■ Reduced problem – dependence on σ

■ θ = 0.17

σnc/σc

1/ε 1 10−2 10−4 10−6 10−8 0
1 8 8 8 8 8 8
2 8 8 8 8 8 8
4 8 8 8 8 8 8
8 8 9 9 8 8 8

16 8 9 9 9 9 9
32 11 11 11 11 11 11
64 14 14 14 14 14 14

128 19 18 18 18 18 18
256 27 23 23 23 23 24
512 32 28 28 28 28 28

1024 56 47 47 47 47 30
2048 65 52 53 53 53 31
4096 71 58 57 57 57 33

■ Not sensitive to jumps in σ; improved robustness for σnc = 0.
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■ Comparison of overall solution times

■ θ = 0.5, σnc/σc = 10−4

1/ε nit tassemble tsolver t

1 9/ 8 6.58/5.04 40.3/17.3 ×2.1
2 9/ 8 7.34/5.14 47.6/16.1 ×2.6
4 16/ 9 7.10/5.07 67.6/16.5 ×3.5
8 29/ 15 7.71/5.15 111./23.8 ×4.1

16 49/ 26 7.40/5.15 178./37.1 ×4.4
32 79/ 42 8.15/5.11 262./55.1 ×4.5
64 121/ 66 7.83/4.95 372./85.1 ×4.2

128 180/107 6.66/5.23 546./138. ×3.8
256 248/163 7.73/5.23 807./205. ×3.9
512 332/234 8.65/5.01 1025/278. ×3.7

1024 485/297 7.73/4.27 1327/299. ×4.4
2048 677/268 6.58/3.65 1968/213. ×9.1
4096 1064/250 7.55/4.19 3862/256. ×15.

■ Convergence deteriorates significantly on stretched grids.

■ Performance is practically uniform in θ.
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■ Reduced problem – dependence on σ

■ θ = 0.5

σnc/σc

1/ε 1 10−2 10−4 10−6 10−8 0
1 8 8 8 8 8 8
2 8 8 8 8 8 8
4 9 9 9 9 9 9
8 15 15 15 15 15 15

16 26 26 26 26 26 26
32 41 42 42 42 42 42

■ Convergence is independent of jumps in σ
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■ Four coaxial cylindrical conductors with varying conductivity.

■ Mock up for the kinds of jumps in Z-pinch simulations.

■ σ ∼ {10−2, 10−8, 10−2, 0}, ∆t/µ ∼ 10−4.

■ XY and RZ cases correspond to the top and front sides.

■ θ = 0.5, ε = 1

■ AMS-CG convergence tolerance 10−10.
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np N nit

1 15,013 / 7,589 13/10
4 59,721 / 30,025 14/10
16 238,225 / 119,441 15/13
64 951,585 / 476,449 17/15
256 3,803,713 / 1,903,169 20/17

■ S has 1.6 times fewer nonzero entries compared to A.

np tassemble tsetup tsolve t

1 0.13/0.10 0.07/0.03 0.21/0.08 ×1.9
4 0.14/0.11 0.09/0.05 0.23/0.09 ×1.8
16 0.17/0.13 0.12/0.07 0.47/0.19 ×1.9
64 0.26/0.14 0.27/0.19 0.75/0.36 ×1.8
256 0.22/0.17 0.98/0.75 1.58/0.79 ×1.6
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np N nit

1 21,720 / 7,320 10/11
4 86,640 / 29,040 10/12
16 346,080 / 115,680 11/13
64 1,383,360 / 461,760 12/13

■ S has 2.1 times fewer nonzero entries compared to A.

np tassemble tsetup tsolve t

1 0.19/0.12 0.21/0.09 0.56/0.27 ×2.0
4 0.19/0.11 0.34/0.15 0.84/0.43 ×2.0
16 0.24/0.13 0.54/0.26 1.70/0.72 ×2.2
64 0.24/0.14 1.23/0.63 2.48/1.10 ×2.1
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np N nit

1 208,370 / 78,774 12/10
8 1,640,728 / 621,224 13/10
64 1,3021,568 / 4,934,592 14/11

512 103,756,864 / 39,337,280 15/14

■ S has 1.4 times fewer nonzero entries compared to A.

np tassemble tsetup tsolve t

1 3.58/2.57 10.0/3.17 23.8/6.91 ×2.9
8 4.03/2.77 32.5/6.95 55.1/10.9 ×4.4
64 4.60/3.15 80.3/18.5 113./28.8 ×3.9
512 6.47/3.32 174./75.5 210./113. ×2.0



Conclusions

Algebraic Multigrid

Local elimination

Memory considerations

Will AMG work?

Numerical results

Conclusions

ASCR PI Meeting – Berkeley, 2010 31 / 31

■ The AMG/AMS solvers perform well in practice when applied to
reduced scalar/electromagnetic diffusion problems.

■ Typical speed-up factors in the considered simulations were
1.6-4.2 (XY ), 2.0-36 (RZ) and 2.0-4.5 (3D).

■ Typical memory reduction: 1.6 (XY ), 2.1 (RZ) and 1.4 (3D).

■ Reduced HX: AMS works on Schur complements!

(Sur, ur) & (SGrrpr, Grrpr) + (SΠrrzr, Πrrzr) + (DSvr, vr)

■ The elimination process leads to lower assembly, solver/setup
times and faster iterations, independent of jumps in σ.

■ Reduction can be easily modified to handle the pure void case.

■ Some details can be found in

R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl)
and H(div) spaces, SINUM, 2007.

Tz. Kolev and P. Vassilevski, Parallel auxiliary space AMG for H(curl)
problems, JCM, 2009.

hypre, http://www.llnl.gov/CASC/hypre.

http://dx.doi.org/10.1137/060660588
http://www.global-sci.org/jcm/volumes/v27n5/index.html
http://www.llnl.gov/CASC/hypre

	Algebraic Multigrid
	Parallel scalability and Multigrid
	AMG for scalar diffusion
	AMS for electromagnetic diffusion
	AMG research topics

	Linear Systems Obtained by Local Elimination
	Local elimination
	Motivating application

	Memory considerations
	Memory -- the case of no fill-in
	An element reduction approach
	Element reduction in 2D
	Element reduction in 3D

	Will AMG work?
	Schur complement properties
	AMG solvers
	AMS interpolation operators
	HX decomposition
	Near-nullspace reduction
	Reduced HX decomposition
	Reduced subspace problems
	Meshes with stretched elements

	Numerical results
	AMG solvers used
	Box problem
	Box problem - XY
	Box problem - RZ
	Box problem - 3D
	Coax problem
	Coax problem - XY
	Coax problem - RZ
	Coax problem - 3D

	Conclusions
	Conclusions




